(NASA=C2-192573) GROUND SYSTFM3 DEVILLPMENT NG2-28710
eMVIKONMENT (5S8DE) SOFTWARE CONFISURATION
MANAGEMENT (Research Inst. for Computing
and Information Systems) 43 p Unclas
' G3/61 0105103 |

____ Ground Systems Development

- Environment (GSDE)
— Software Configuration Mggagement

L Fusr ol

s Victor E. Church A A
— - D. Long)
Ray Hartenstein /S O5700

iputer Scienc ﬂ 43

Alfredo Perez-Davila
___University of Houston-Clear Lake

~ . April 30, 1992
o ~ Cooperative Agreement NCC 9-16
Research Activity No. SE.34
NASA Johnson Space Center
Mission Operations Directorate
B Space Station Ground Systems Division

-
| —~
| = ” ,\E
—— =~

Research Institute for Computing and Information Sysfemé N
University of Houston-Clear Lake

TECHNICAL REPORT

The RICIS Concept

" The UHCL/RICIS missi

The University of Houston-Clear Lake establl

i Hou ished the Research Institute for .
Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
programof research in advanced data processing technology needed forJsC’s
main missions, including administrative, engineering and science responsi-
bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 19886, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to
conduct the research.

1s to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

_to its sponsors and researchers. Within UHCL, the mission is being

{mplemented through Interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
industry

" Morcover, UHCL cstablished nelationshjps with other universities and re-

search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help

oversee RICIS research ani education programs, while other research .-

organizations are involved via the “gateway” concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge tn the computing and informa-
tion sciences. RICIS, working jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.

(g

!

\ I

Ground Systems Development
Environment (GSDE)
Software Configuration Management

mu

I

o

M

{

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing
and Information Systems by Computer Sciences Corporation in cooperation with the
University of Houston-Clear Lake. The members of the research team were: Victor
E. Church, D. Long and Ray Hartenstein from CSC and Alfredo Perez-Davila from
UHCL. Mr, Robert E. Coady was CSC program manager for this project during
the initial phase. Later, Mr. Ray Hartenstein assumed the role of CSC program
manager. Dr. Perez-Davila also served as RICIS research coordinator.

Funding was provided by the Mission Operations Directorate, NASA/JSC through
Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the
University of Houston-Clear Lake. The NASA research coordinator for this activity
was Thomas G. Price of the ADPE and Support Systems Office, Space Station
Ground Systems Division, Mission Operations Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of UHCL, RICIS, NASA or the United States Government.

§ mN EEe R R my W o O s M me R W B ..l JUINT Bl

[

. { SR I A B { R | { i

{

')

CSC/TR-92/6054

Ground Systems Development
Environment (GSDE)
Software Configuration Management

Prepared for

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas

by

Computer Sciences Corporation
System Sciences Division
Beltsville, Maryland and League City, Texas

and

The University of Houston - Clear Lake

Research Institute for Computers and Information Sciences
Clear Lake, Texas

under

Subcontract No. 075

RICIS Research Activity No. SE-34
NASA Cooperative Agreement NCC 9-16

April 1992

Preparation: V. Church
Quality Assurance: D. Long
Approval: R. Hartenstein

A. Perez-Davila

CSC/SSD - UHCL/RICIS

K
t

il

CSC/TR-92/6054
GSDE Software CM

30 April 92

i

oml ool Eom wm

N

g 4r

L

(]

{

U

fi

RS

“
e

i

i

AL

]

1l

LI

CSC/TR-92/6054
GSDE Software CM

Abstract

This report presents a review of the software configuration management (CM)
plans developed for the Space Station Training Facility (SSTF) and the Space
Station Control Center. The scope of the CM assessed in this report is the
Systems Integration and Testing Phase of the Ground Systems development life
cycle. This is the period following coding and unit test and preceding delivery to
operational use. This report is one of a series from a study of the interfaces
among the Ground Systems Development Environment (GSDE), the development
systems for the SSTF and the SSCC, and the target systems for SSCC and SSTF.
This is the last report in the series.

The focus of this report is on the CM plans developed by the contractors for the
Mission Systems Contract (MSC) and the Training Systems Contract (TSC). CM
requirements are summarized and described in terms of operational software
development. The software workflows proposed in the TSC and MSC plans are
reviewed in this context, and evaluated against the CM requirements defined in
earlier study reports. Recommendations are made to improve the effectiveness of
CM while minimizing its impact on the developers.

PRECEDING PAGE BLANK NOT FILMED

CSC/SSD - UHCL/RICIS iii | 30 April 92

CSC/SSD - UHCL/RICIS

iv

CSC/TR-92/6054
GSDE Software CM

30 April 92

N Wy sy Wl W

1 [[]

I QR I | (S | AR REREN BN ne {l

[

CSC/TR-92/6054
GSDE Software CM

Table of Contents

Section 1 - INTOAUCHON ...vevvvrrereersrrersrrrscrsssmessesissnissnesssesssnesssnisssessnsssssassssnsssrassossnesess 1
1.1 ASSESSIMENE SUIMMMATYccvrersersermsssanssnssessessssnssssnsensassssssnsssosaosessassssssesses 1
1.2 Ground system software development.........cceveueercesmncsssinisicnncsensnnens 2
1.3 Organization of REPOTL......ccocviviiiurnnererisriecsssnscsissninsnisssaseneas 3
1.4 References and related doCUMENLALONcovvvrrrrmrenrerscnicscnnencnnissnnnisnnee 4
Section 2 - Requirements (Analysis Context) 5
2.1 Goals of CM IeqUITEIMENtS. ...covereurerirerirrrersesssenessesssssnsensstsssessiesessaisinses 5
2.2 CM Requirements SUMMATY.....ccosemmrmrscsesniscisesnissiesssnsssssssisssssansassnsas 6
2.3 Space Station SSE CM SUPPOIT.........cvuerireereiremrenssnsasenes rerereeereeseeneaeanes 8
2.4 Options and alterNatiVES.........ccrerrrirenmiesnesesisstsessensssssnsessesnsnsassnsanes 9
Section 3 - Operational Considerations ...\ ..viueeresrrerersarsssessnssssnsnssessisassasassnsansnsans 11
3.1 Development Process OVETVIEW......vcervrsirersensstssnssssesessssessessssnssnisasanannas 12
3.2 Clean-slate approach to formal CMccoririniinnnininncniniinninnnninen 14
3.2.1 IQTE-resident product files........cccovereervenninsennnccsscsnnsescessessnnens 18
3.2.2 GS/SPF-resident product files........cccverivvervrerienirensnscinisnnssecns 19
3.3 Combined formal/informal CMccccvvimmicreeireinnreinsenscsecsssaniisesnionn 20
3.4 Using the SPE as a conduit.........cecuvrererinnnnecnnessssnssnsensssstnnseisanianenas 22
3.5 The mOoSaIC EffECtccverrersrirerrcrrcnsisrinisiseninisassessssessnsensssesessossnssnens 24
3.5.1 Compilation Libraries.........ceoevrrerneniversnnennninninssesracsscssnnincssens 24
3.5.2 Testbed CONSIUCHON .covvueerrcrrresrsressanisssnnisssanesssnnessssanssrssanesssns 25
Section 4 - Space Station Control Centercoovevercinriciinnniniiinii. 27
4.1 Overall software WOrKflOWccccceeveciniiriisinninvnnenensneesenessnessnesssnnens 27
- 4.2 Configuration managcrnent 28
4.3 ASSESSITIENL....ccccveererreersnressrssssssossasssesserssnssstestessasssassnsssssssnssstessssessanssss 28
Section 5 - Space Station Training Facilityccooevrmernnsnsscsnnsiescsssniinsnnnsnnennes 31
5.1 OVerall SOftWATE WOIKEIOWcvvemusnreemmenrssesnensssssssarsssssssssnssesssesseseness 31
5.2 Configuration Management. . ..ccccrirersursrressssessessnssnssessesssessasssnessessassaass 31

5.3 ASSESSIMICNL...ccccuerierrrercnnseressassnessnsssnissrssstsnsssassnsessassassanssrsessnserarsssassses 32
Section 6 - ReCOMMENAAtONS ...c.covirreerersersersrisrinsiersisiniseissnssesessmsssnsssnesssnessassns 35
6.1 Space Station Control Center.........cervvuirerverrinesresissnsrssnssssessnivansaes ‘....35

PRECEDING PAGE BLANX NOT FILMED

CSC/SSD - UHCL/RICIS v 30 April 92

CSC/TR-92/6054
GSDE Software CM

List of Figures

1. Ground Software Development Environment e seeeneeeseseeeses s 3
2. Develop-build-test ProCess.cccviiiinninsisisisnssanssnissisniseieeseensn. 12
3. CM Process symbols rerereessasesnessesesaes _ 7 et asaeeneaans ;13
‘4. Clean-slate approach to formal CM ... 16
5. IQTE-resident product files........curererscecsersrenseense S
6. Storing product files in the GS/SPF.......coviiveivenneeeieienne 19
7. Combining formal and informal CM SO 3 |
8. Using the SPE as a conduit.......cccoervireneniinneeseccsennesneseensnnees I 23
9. Mixed libraries in the IQTE.......cccvevermsmsurisisuscenssnsssesmsesesssisassssesesessesesssnss 24

T @w s @ O wWR o#mmn gl

10. Mixed product files in the IQTE.........ccccnvvennrinvnsincnnncsinnesnissneineenens. 26

CSC/SSD - UHCL/RICIS

vi

30 April 92

1t { g1 q IR ({ { { (! A (TR (1] {n .

Il‘P I

CSC/TR-92/6054
GSDE Software CM

Section 1 - Introduction -

1.1

As part of the Space Station Freedom Program, the Mission Operations Directorate

(MOD) at JSC! is developing a Space Station Training Facility (SSTF) and a Space
Station Control Center (SSCC). The software components of these systems will be
developed in a collection of computer systems called the Ground Systems Development
Environment (GSDE). The GSDE will make use of tools and procedures developed by
the SSFP SSE contractor. Both the SSTF and the SSCC will be developed using both
shared and duplicated elements of the GSDE.

The SSTF is being developed under the Training Systems Contract (TSC). The SSCC is
being developed under the Mission Systems Contract (MSC). As part of the project
planning and development effort, the MSC and TSC contractors have developed plans
for CM of software during coding and all stages of testing. At several points these plans
have been reviewed by NASA and by this study task, leading to changes and
improvements in the CM plans. (Previous assessments by this study are documented in
CSC/TM-91/6102, Interface Requirements Analysis, and CSC/TM-91/6061, Operations
Scenarios. See section 1.3 for citations and related documentation).

As the planning continues and becomes more detailed, further reviews (such as this one)
will be conducted to ensure that the integrity and reliability of developed software remain
high priority considerations. This review is based on a set of goal-centered CM
requirements that emphasize the end result of CM without specifying its implementation.

During the Systems Development and Acquisition Phase? , SSTF and SSCC software
will be configuration-managed using contractor-specified tools in their respective
software production environments (SPEs). When the software is transitioned into the
Systems Integration and Testing Phase following SubSystem Acceptance Test (SSAT)
(or sooner, depending on contractor-dependent integration procedures), it will be placed
under formal CM on the Ground Systems/SPF (GS/SPF) using the tools provided by the
SSE. Integration testing and build-up to delivery will involve both contractor-managed
and the SSE-supplied CM capabilities. ,

Assessment summary

During the two years of this study effort, the CM plans of both contractors have changed
to reflect changes in the GSDE and have evolved to include more specifics and fewer
potential problems. Given the size of the projects, the importance of CM in long-
duration system reliability, and the growing emphasis on total quality management, the
CM plans of both contractors show serious commitment to professionalism.

1 Acronyms and abbreviations that are in common use in the Space Station Freedom community are not spelled
out in the text, but are defined in the Glossary at the end of this report.

2 The MSC/TSC System Development Life Cycle is described in JSC-25519, DA3 Software Development Metrics
handbook

CSC/SSD - UHCL/RICIS 1 30 April 92

CSC/TR-92/6054
GSDE Software CM

Both CM plans, however, fall short of the amount of detail that might be expected at the
current stage of these projects. Neither project has chosen to embrace fully the CM - -
capabilities developed by the SSE, nor have they provided equivalent detail about their
alternative plans. Since the SSE provides a reasonable baseline for CM (which would
allow the projects to establish detailed CM plans with relatively small efforts), the lack of
~detail is a matter of concern.

The SSCC approach to CM currently involves a non-standard, partly non-COTS set of
tools and capabilities (the CORCASE-Atherton proposal) about which little information
is available. Although the overall SSCC CM approach is sound, there seems to be
considerable risk in the lack of details of the plan. An m-depth mdependent assessment
is recommended. -

The SSTF approach to CM involves distributing CM functionality across three different
"environments to maximize operational ease of use. The specific CM tools to be used in
two of these environments are not yet identified. Since the overall SSTF CM plan
emphasizes ease of development rather than product accountability, this lack of specific
detail poses a risk in terms of assessing long-term maintainability of the system. We
recommend that the operationally convenient distributed CM system should be
supplemented with automated procedures that place all delivered software under GS/SPF
CM control. Furthermore, when the specifics of the distributed CM system are
identified, those systems should be independently reviewed.

1.2 Ground system software development

Ground systerns ‘software for the SSCC and SSTF will be devclopcd and tested using
combinations of development computers and workstations (collectively referred to as
software production environments), a Ground Systems SPF (GS/SPF), and target
platforms that are essentially the operational target environments or equivalent.
Configuration management wﬂl take place i in all three envuonments as software

the basu; deyglopment context. The target environments include IBM mamframe
computers, Unix-based workstations, and mission-specific special-purpose hardware.

Software for the SSTF and SSCC will be developed in the SPEs or in subcontractor
facilities, and accepted into the GSDE following SSAT for systems integration and
testing. The software is then placed under formal CM on the GSDE host (the GS/SPF).
The integration and test will take place in the target environment, or on platforms that are

essentially equivalent to the target.

'For convenience in this report, the testing environments will be referred to as

Integration and Qualification Test Environments (IQTEs). (The two projects use
different terms for the target environments. IQTE is a synonym for either term.)
Following the Systems Integration and Testing phase, qualification testing (QT) will be
performed prior to delivery to operations.

CSC/SSD - UHCL/RICIS 2 30 April 92

il @ S W qQin

Nl

¢!

{1

f

Lo

(7

a1

A

1.3

CSC/TR-92/6054
GSDE Software CM

Source code development, unit The GS/SPF host is intended to
testing, test item development provide the only formal conduit betwsen

the development environments and the

Development: software A
target systems. All software that is
production environment (SPE) submitted for formal testing on the target
Acceptance-tested platform is first placed under formal CM.
source code

During development, the STM system is
used to control software being tested
Formal CM of source code, on the target. STM makes use of
object code, test data, etc. contractor CM as well as formal CM.
STM of files during test and

integration

GS/SPF (Amdahi
() Test software, Test items,

Wss scripts
Development LAN test results,

build products,
process metrics [Hardware and software
integration formal test, creation
. of operational software
development interactive access for test and debug | __ _ | Target: integration, qualification

workstations . test environment (IQTE)

Figure 1. Ground System Development Environment (GSDE)
The GSDE serves as the basic development environment for both the SSCC and the
SSTF; only the GS/SPF is shared between the two.

The primary language for development of Space Station Freedom software is Ada*. The
SPEs will include Ada-compilation platforms (e.g., Rational R1000 computers) to
support Ada development. It is also probable that a substantial amount of non-Ada
code, primarily C-language, will be developed (or reused) and supported. Workstations
and file servers will be used along with the Ada compilation platforms to support
development. Configuration management and software measurement in the SPEs will be
performed by the developers, using contractor-specified tools.

The GS/SPF is an IBM-compatible mainframe with a separate instance of the SSE SPF
software for each project (SSCC and SSTF). The GS/SPF will host both the formal CM
system and the STM system, along with disk storage supporting both systems. Formal
CM will be used to manage software following Acceptance Test. For reasons of security
and software integrity, the GS/SPF will serve as the conduit for moving software from
the SPEs to the targets.

Organization of Report

Following this Introduction, Section 2 reviews the software CM requirements that form
the basis for evaluation. Section 3 describes operational considerations of trying to
perform CM in a distributed environment. Section 4 presents a description and
assessment of the SSCC CM plans, and Section 5 does the same for the SSTF CM plans.
Section 6 presents the recommendations of the study team.

* Ada is a trademark of the U. S. Department of Defense, Ada Joint Program Office

CSC/SSD - UHCL/RICIS 3 30 April 92

CSC/TR-92/6054
GSDE Software CM

1.4 References and related documentatlon

Atherton Technology, "Software tools integrate the management of complex design
products from Computer Design, August 1, 1991

Atherton Technology, "Software BackPlane" product news release, 1991

Babich, Wayne, Software Configuration Management: Coordination for Team
Productivity, Addison-Wesley, 1986

CAE-Link Corporanon SSTF Software Configuration Management Approach
September 1991 (briefing)

CAE-Link Corporation, Space Stanon Training Facility Ground S ystem Development
Environment Current Capabilities, December 1991 (briefing)

Card, David, and Glass, Robert, iieasuring Software Design Quality, Prentice Hall, 1990

1991

Computer Sciences Corporation, Ground Systems Development Environment (GSDE)
Interface Requirements Analysis Final Report, CSC/IM -91/6102, June 1991

- Computer Sciences Corporation, SSE Software Test Management (STM) Capability:
Using STM in the Ground Systems Development Environment (GSDE), February 1992

Computer Sciences Corporation, Configuration Management and Software Measurement
_inthe Ground Systems Development Envzronment (GSDE), February 1992

Lockheed Missiles and Space Company, SSE System Users Guide; Space Station
Freedom Software Support Environment (DRLI 23), LMSC F255423, March 1991

Loral Space Information Systems, Configuration Management Subsystem: Subsystem
Functional Requirements Review (SSFRR) Presentation, October 1991 (briefing)

Loral Space Information Systems, Ground Systems Development Environment: Software
Production Environment: Review of Current Capabilities, October 1991 (briefing)

Loral Space Information Systems, GSDE Augmented with CORCASE, January 1992
(briefing)

NASA JSC, DA3 Software Development Metrics Handbook, Version 1, JSC- 255 19,
December 1991

CSC/SSD - UHCL/RICIS 4 30 April 92

anr § 1

Wi

an

O L |

(

| ¢

]

(1

(PR | {

q!

CSC/TR-92/6054
GSDE Software CM

Section 2 - Requirements (Analysis Context)

2.1

This section summarize the CM requirements published earlier (February 1992). It
establishes the context--the accomplishment of CM objectives--for the interface study
and the assessments in section 6.

Goals of CM requirements

Configuration management is a process mechanism® used to ensure that a delivered
product is a true reflection of the effort that went into its construction. On a large
project, software CM is necessary for the delivery of reliable, maintainable software.
CM mechanisms must be applied throughout the development process or they will not be
effective.

The assessment of CM, however, can focus either on the continuing mechanisms (a
process view) or on the end-result of those mechanisms. This study is based on the latter
view.

The SSE CM requirements and design documents provide an example of the process-
oriented view, with detailed specifications of processes, formats, and relationships.
Typical users guides and standards and practices manuals also embody this view.
Because of the diversity of the systems being developed, and the range of options
available to achieve effective CM (see section 2.4), this view seemed to be too
constraining for the RICIS evaluation. Accordingly, the end-item view of CM was
developed to support assessment of different approaches based on expected results.

The end-result view of CM focuses what CM is intended to accomplish, rather than on
the mechanisms involved. This goal-oriented view prescribes the conditions of
controlled, identified, traceable software products without specifying the details of the
process.

The requirements developed in the earlier study report (CM and SW Measurements in the
GSDE) and summarized below are based on this end-item, goal-oriented view of
software.

As a process, CM is valuable (essential, in our view) for efficient management of
software development. That is to say, CM would be cost-effective for large projects even
discounting its value in assuring product quality. Both the MSC and the TSC contractors
have described their plans to use CM in this manner. That use of CM, however, is a
contractor prerogative and is not addressed in this assessment.

* The term "process mechanism" is used in contrast to "product mechansims" which are applied to a product at the
end of a process rather than during its course.

CSC/SSD - UHCL/RICIS 5 30 April 92

2.2

CSC/SSD - UHCL/RICIS

CSC/TR-92/6054
GSDE Software CM

As a product quality assurance mechanism, a CM system must be able to demonstrate
that the delivered product includes exactly those versions of components that were tested

~ and approved. It must also be able to demonstrate that all test certifications claimed for

the product were actually performed on the software being delivered (and not on some
undelivered version of the product). -

In order to support sustaining engineering of the product, the CM system must ensure
that the product can be regenerated from files that are write-locked (that is, files that can

be read but not changed). It must also support traceabxhty to the set of requirements,
interface specifications, and design documents that were in effect at the time of delivery.

This report is based on assessments of the SSTF and SSCC plans for CM in the context
of those desired end-item conditions. The requirements summarized below formed the
basis of the assessment (with some reference to the earlier, higher-level set of
requirements described in the June, 1991 Interface Requirements Analysis). The
assessment (and the requirements) focus on the goals to be achieved, rather than on the
mechanisms chosen to achieve them.

CM Requirements Summary

“The numbered items in sans-serif text are the requirements. The indented paragraphs

under each requirement are explanatory material and not part of the requirements
spcmﬁcanon

1. Source files for all delivered software must be placed under NASA-
managed CM.

When you deliver software to operations: you must place the source code
and any ancillary files for all developed software under NASA-managed
CM (e.g., the SSE-provided CM system on the GS/SPF). This does not

" include mission specific data, which is under separate control, or
unmodified COTS software. You must also record the steps (e.g.,
compilation, linking) that were followed (or can be followed) in building

" the deliverable software from the controlled files.”

2. The software that is delivered must be the same as the software that was
tested.

~ The QT process certifies software as having passed certain tests and
therefore as meeting the associated requirements. You must keep records
to show that the software used in the QT process was built from the same
source files that are used for the delivery. You must be able to show that
the same build options (e.g., optimization settings used during
compilation) were used both for QT and for delivery.

6 30 April 92

q

L []]

ad sl

¢!

{

((!

i

n:

Y Y 1R A

i

CSC/TR-92/6054
GSDE Software CM

All files necessary to recreate the qualification tests for delivered software
must be placed under NASA-managed CM.

All test scripts and test data used in QT must be write-locked and stored,
available to support retesting or regression testing. The STM mechanism
(provided by the SSE on the GS/SPF) provides snapshot and archive
mechanisms that would be suitable for meeting this requirement.

Configuration control mechanisms for software in the Systems Integration
and Testing phase must involve permanent records and independent
authorization.

Once software is transitioned to SIT and QT, all changes must be
recorded. This requirement says that the person approving a change
cannot be the same as the person initiating and performing the change, and
the approval must be recorded. The SSE CM system provides appropriate
mechanisms for this approval and recording. Non-SSE CM must provide
some equivalent mechanisms.

The status of all approved changes shall be recorded and accessible.

For any approved change, it must be possible to determine which
components will be affected, and which versions of those components.
The status (e.g., applied, deferred, not applicable) of a change to an
particular source code file must be available (that is, accessible to inquiry
or included in a report). The change status of components in snapshots of
systems should also be accessible.

The status of all DRs and STRs shall be recorded and accessible.

From a sustaining engineering perspective, the relative stability of
components is a valuable indicator of future reliability. The status of
discrepancies (degree of criticality, components implicated, resolution,
identification of test case or activity that triggered the report) provides an
avenue to assessment of system quality. As long as all discrepancies are
recorded, the absence of discrepancy reports can be taken as a positive
indicator of the quality of the systemn.

Applicable interface specifications shall be archived with software delivery
snapshots.

Interface specifications, like requirements, are subject to change. Even
without requirements changes, there are shifts of functionality between
hardware and software, between developed software and COTS, and
between developed subsystems and systems. In order to perform
sustaining engineering on a fielded system, it is important to have

CSC/SSD - UHCL/RICIS 7 30 April 92

CSC/TR-92/6054
GSDE Software CM

recorded the interface agreements that existed for that system at the time
of delivery.

Space Station SSE CM support

The GS/SPF provxdes the Oracle-based SSE CM system for formal control of software.
This CM system is described in the SSE System User’s Guide, DRLI #23, The CM
system uses the GS/SPF file mechanisms for storage of data, and the Oracle database

management system to maintain information about conﬁguranon items. The CM system

- provides mechanisms for:

configuration identification,
change-instrument processing, - = -
component checkin and checkout,

snapshot and archive management,

access control, and

status reporting.

Most functxons of the CM system are avaﬂable in both interactive menu and command-
line batch modes of operation. The CM system is intended to interoperate with
developmental CM systems (such as the rational CMVC system), and provides
mechanisms for transfer and operations on collections of components as well as on
md1v1dual components

The SF/SPF will also prov1de an Oracle based Software Test Management (STM)
capability to manage files and test scripts during integration and qualification testing.
STM provides a mechanism for moving software between the development and the target
environments in a controlled fashion. Through the use of command-line operations,
STM can interoperate with the SSE CM system and with any developmental CM that
supports command-line (non-interactive) processing.

STM provides a controlled environment for defining tests, assembling testbeds and test
articles, and recording results of testing. (The testing itself is on the target platform, and

" is'not under control of STM.) STM also provides a mechanism to record snapshots and

build information. It is anticipated that the STM build mechanisms will be translated
into the formal build-delivery process to be provided in OI 7.0 of the SSE.

Together with contractor-developed procedures and automated mechanisms, the SSE CM
and STM capabilities provide tools that can be used to satisfy the requirements
summarized above.

CSC/SSD - UHCL/RICIS 8 30 April 92

41 U ww' W

Qi

v

R L LRI I A | USRI I fl €

2.4

CSC/TR-92/6054
GSDE Software CM

Options and alternatives

There is no single way to achieve the goals identified for CM in the GSDE. Given the
range of different computers, workstations, servers, application characteristics, and
languages of available reuse libraries, multiple approaches are called for. The need to
integrate mainframe-based Ada code with workstation-based C and Ada code requires
either multi-platform CM support or multiple CM systems. The tools provided by the
SSE (STM and the CM system) provide most of the required capability, but not all of it.

During the SI&T phase, software will be uploaded from controlled storage for
compilation on the target platforms. The compilation products may be kept in the target
environment for extended periods, to minimize file transfer and recompilation time.
These products need to be controlied in the target, as they will be used for formal testing.

At the same time, software may be uploaded from the developers' workstations to the
target for developmental (e.g., unit) testing on the target. The target-based CM system
needs to be able to distinguish between developmental and controlled software, lest
deliveries inadvertently include untested code. The SSE-provided tools provide only
limited capability to deal with this situation.

Variations of procedural controls and automated CM tools will be needed to effect
control in this diverse development-CM-target environment. This diversity is the reason
for using goal-oriented rather than process-oriented requirements in assessing the MSC
and TSC plans for software CM. ‘

CSC/SSD - UHCL/RICIS 9 30 April 92

Ty my Hue

[oo T Dt T 11T S [ST (11 STTTN Sl S I {11 S]]

\

¢« tn [

{l

CSC/TR-92/6054
GSDE Software CM

Section 3 - Operational Considerations

There is a constant tension in any large software development effort between the
flexibility needed for responsive implementation and the control needed to ensure project
completion. This tension is evidenced in the operational tradeoffs that are made between
complete freedom for developers and rigorous control for the purpose of quality
assurance. Programmers argue that rigorous control is antithetical to creative
progamming, while project-level managers argue that maintainability is equally as
important as creative solutions.

Operationally this tension leads to a range of CM solutions. The formality of CM varies
from minimal control on the developers' own workspaces, through moderate control
when a subsystem enters testing, to rigorous control when a product undergoes QT or
delivery. This range of CM solutions, incorporated in both MSC and TSC plans,
provides a mechanism for escalating the level of control throughout development.
However, it also provides a mechanism for subverting the intent of CM by applying too
lax a standard for transitioning to more formal control.

There is a risk in any schedule-dominated organization, like the manned space program,
of magnifying the importance of local milestones. When programmers face deadlines
with almost-working code, they have a tendency to postpone or ignore requirements for
CM in favor of getting the software to work. The long-range implications of poorly-
controlled software do not seem nearly as immediate as the schedule that calls for a
delivery now. It's the job of the QA organization and established procedures to provide a
countervailing influence.

Both the SSTF and the SSCC projects include mechanisms for graduated CM during the
life cycle. In this section we take a look at some of the operational considerations
involved in implementing those mechanisms with either automated or manual
procedures.

Automated procedures are those which basically don't require the programmer (or
manager) to choose whether or not to utilize available CM mechanisms. Manual
procedures, in contrast, rely on personal discipline; they permit the developer to bypass
controls. As an example, the SSE-provided CM system requires a change instrument for
any change to controlled software. The SSE-provided STM capability, on the other
hand, makes use of externally controlled software and inherits whatever level of control
(or lack thereof) is provided by the owner of the software. In this regard formal CM is
automated while STM uses manual procedures.

In this section (and in this study) we are concerned with configuration management at the
interface between the development environments and the testing environments.
Originally that interface was completely defined within the GS/SPF, but as the two
projects have evolved alternative interfaces have been identified. The following
subsections address the typical development process, the basic mechanisms of control,
and the possibilities and implications of bypassing such control.

PRECEDING PAGE BLANK NOT FILMED

CSC/SSD - UHCL/RICIS 11 30 April 92

3.1

Development process overview

()

CSC/TR-92/6054
GSDE Software CM

The reality of a complex project is that many pieces must come together for integration
and testing. Any given subsystem is likely to have interfaces with several others, either
dynamically or through shared files. Testing involves executing several different pieces
of softwarc, concurrently or scnally

Durmg dcvclopment all or most of these deferent ptccgsﬁg@eﬁxfn parallcl as dtfferent
subsystems move from unit test to deliverable status, and then through serial versions of
delivery. Many elements of a given testbed are likely to be "scaffolding”, software
designed and built to support testing but destined for replacement by deliverable
software. Other elements are temporary versions of software that exist between bug fixes
in a development cycle. Given such a dynamic environment, it can be difficult to

determine exactly what was tested with what.

Figure 2 illustrates the process of assembling a testbed configuration from its constituent
elements. Command scripts (stored command files), indicated by the box at lower left in
the figure, are used to orchestrate the assembly process, from compilation to staging.
(Other command files may also be used to control the testing process, but that process is

not shown).

Source file intermediate test elements testbed
generation products configuration

system source/object _)M
A —>) ~

test items

= [I=[
—>{ el —-> -—>DU ==

! testbed elements /
test data
test data
o -——> ~

2! test data
B .
. A

test products

d
A) T

transfer, compile, build, stage, and test command scripts

test resuits and information j

system components — information and control

Figure 2. Develop-Build-Test Process.
Primary source files, compiled and built under script control into libraries and products,
come together in the test phase. Testing results feed back into source development.

CSC/SSD - UHCL/RICIS 12 S 30 April 92

g

40

A L A (I 4 R (N

-

1

{

3

d

CSC/TR-92/6054
GSDE Software CM

Source files are translated (if necessary) and stored in libraries of software objects,
including test data objects. These objects are used to create executable files that are
combined into a specific testbed for testing. (The graphic shapes in figure 2 were
designed to indicate the "fitting together" of test item, test data, and supporting testbed.)

As indicated by the feedback arrows going right-to-left, there are specific products
generated in testing that can be retained for subsequent use. These products include
executables from the testbed as well as test data that is output from one test and used as
input to another. There is also a feedback of information that affects all of the source-file

column of software components.

The same process, using mission data instead of test data and deliverable software instead
of scaffolding, will be used to generate operational software loads.

Figure 2 portrays the basic steps that are of concern in configuration management of the
development-to-test interface. These elements (source files, libraries, products) are
further discussed in the remainder of this section.

Figure 3 shows the symbols that use used in figure 2, along with other that will be used
in later figures to describe possible CM operations. Basically, heavier borders are used
to indicate greater formality of configuration control, and darker shading is used to
signify later steps in the integration and test process.

Configuration control formalism

These symbols are used to indicate the
potential for unrecorded or unapproved
change to a component (a file).

Genesis of files

These symbols differentiate primary files
from derived files (e.g., compilation products),
Flles (e.g., COTS S/W) from other
organizations are separately classified.

controlled by| files are managed by

the developer without
developer separate approval or

record-keeping

independent CM but
moderate limited review and
control

physical file security

formal rigorous CM; file
control changes performed
only by CMO

controlled files are
M provided by other
organizations (e.g.,
COTS, flight SW)
Figure 3. CM process symbols.

source code, scripts,
source test data, etc.

generated from source
by compilers or other
processors; object code,
libraries, test data, etc.

executable images,
generated tables and
data (e.g., screens), efc.

Dvi'] testbed configuration
D D generated from test

CCU article, test data, and
supporting software

Heavier borders are used to indicate more formal configuration control. Darker shading
indicates products closer to the delivery stage of software.

CSC/SSD - UHCL/RICIS

13 30 April 92

3.2

CSC/TR-92/6054
GSDE Software CM

Clean-slate approiehttg formalCM - =

At the start of a new phase of a development effort, all the myriad elements are

coordinated. There is consistency among source files, libraries, test data, command files,
and testing plans. Itis a simple matter to determine what software has been tested, and
what data files were u

As development and testing progresses, a sort of entropy sets in. Software is iteratively
tested and modified by different developers on different schedules. Test data files evolve
as special cases are added to test additional requirements. Programmers share command
files and test scaffolding, both to save time and to make use of tested workarounds.
Precise knowledge of what software is bemg tested with what version of test data gets

harder and harder to come by.”

To address this problem, development leaders often resort to periodic zero-basing of the
project or subsystem. All source files are . frozen and recompiled to generate defined
libraries and executables. Redundant copies and minor variants of command files are

deleted from common access. Everyone starts fresh from a common baseline.

Expenence with mmnframe-centered NASA ground systerns development has shown the
effectiveness of this approach even with FORTRAN-based projects. Source code may be
developed on the mainframe or on workstations; when ready for integration testmg itis
added to a source-control library that supports maintenance of controlled and "test"
versions of software. The source is compiled on the mamframe into load modules which

serve as testbeds for further testing.

These load modules can be used as libraries of object code by using linkage editing tools.
(This capability is similar to the functioning of Ada libraries that include source and
intermediate code for use in constructing executable images.) Test articles are link-
edited into controlled load modules for testing, avoiding the need for massive
recompilation or build procedures. When combined with a source library control system
that supports both development and test versions of code and data, this approach has been
proven on a large number of ground system software efforts.

Even with source code and access control, however, the status of libraries and load
modules gradually becomes uncertain due to the non-automated procedures involved in
making changes. Since every programmer needs access to the "controlled" files,
questions arise as to which versions of fixes and workarounds have been applied to the
official version of the load modules. At that pomt, as often as weekly during heavy
testing and debug efforts, the old load module is erased and a new load module is
generated from controlled source. All necessary fixes are first applied to the source code
to ensure that the new baseline is up-to-date.

Developers thereby start from a new "zero-based" baseline.

CSC/SSD - UHCL/RICIS) 14 30 April 92

1

i (

CSC/TR-92/6054
GSDE Software CM

On activities as large as the Space Station Freedom ground support systems, it will not
generally be practical to zero-base an entire project or subsystem. Both the SSCC and
the SSTF involve distributed systems with multiple parallel development efforts,
complex real-time interactions, and integrated project schedules. Unlike the mainframe-
centered experiences described above, there may not be a single point or a small set of
items to erase and recompile. Mechanisms and approaches are needed to meet the
requirements summarized in section 2 for reliability and maintainability of ground
system software.

One of the primary mechanisms for quality assurance of the software is the use of
separate computer systems for development, and for integration and test. The transition
from SPE to IQTE can serve the same function as the "zero-basing" described above.
This section discusses ways that the independence of the IQTE can be used to good
advantage.

Figure 4 describes the basic "clean-slate" approach to using the IQTE as a consistency
and reliability mechanism.

CSC/SSD - UHCL/RICIS 15 30 April 92

CSC/TR-92/6054
GSDE Software CM

S/W Production Environment (SPE)

A] e

1

v
Lallellcl

GS/SPF with formal CM

1 Files A, B, C are promoted from contractor CM to formal CM on the GS/SPF

SPE
(files deleted to avoid
concurrent maintenance
problem)

Lallsllcl]
N\

integration, qualification
test (IQT) environment

no developmaent files are
resident in the IQTE; only
COTS and NDI software

load image

GS/SPF

2 Files A, B, C are transferred to target,

3 compiled into library A-B-C
4 and linked to form executable ABC

SPE

Lallsel]lcl

GS/SPF

7 Al source files, including development libraries, are deleted from the IQTE

5 ABC is tested on the target
6 reports are returned to the SPE

IQTE

possibly retained
for further testing

[rf) 7

load image

Figure 4. Clean-slate approach to formal CM

Very high reliability is achieved with some performance penalty by erasing all product
files after use. The CMO places source code under formal control, uploads it to the
IQTE for test, then deletes all products after testing is complete.

CSC/SSD - UHCL/RICIS

16

30 April 92

a0 e

AR

CSC/TR-92/6054
GSDE Software CM

The starting point for this approach is the set of source files under contractor-managed
CM in the SPE. The files that are ready for testing (whether IT or QT) are checked in to
formal CM, using the SSE-provided CM procedures. Each component to be checked in
must be identified on a change instrument. (A single instrument can be used to check in
an entire subsystem, if desired). The files are copied to the GS/SPF by the developers,
and turned over to the CMO who performs the actual checkin. Note that the only ground
system files on the IQTE are "non-developed items" such as standard libraries (e.g.,
COTS software) and software from other Space Station activities.

Once the files are checked in to formal CM, they should be deleted from the development
library to avoid any chance of inconsistency between duplicate copies.

Using scripts provided by the developers, the CMO copies specific files to the IQTE.
Still under script-based commands, the files are compiled into a library for use in
generating executable files. (There may be more than one library involved, and more
than one executable image.) The compile and build processes produce listings and other
information output which are returned to the developers.

The development products are tested on the IQTE, generating test reports for use in
certifying the software components tested.

At the completion of testing, the product files are deleted from the IQTE. The primary
consideration is that all source files and compilation libraries be erased, so that the next
test sequence does not inadvertently reuse the products of this test. If specific executable
images are required to support testing of other products, they may be retained (locked, of
course, against any modification) on the IQTE.

A primary characteristic of this approach is that software flows from the controlled
environment fo the IQTE; only information is fed back. This ensures that files on the
GS/SPF are always secure. Both MSC and TSC have descnbed their CM plans along

these lines.

This "clean slate" approach ensures that all test items are generated from controlled
source code, but exacts a penalty in performance. Copying all of the necessary files can
become a significant overhead, and massive recompilation is even more costly. For large
subsystems (e.g., 50-75 K lines of code) recompilation time could become a significant
schedule bottleneck.

It should be noted that a typical load image generated for integration or qualification
testing might remain "under test" for an extended period of time (e.g., weeks). The need
for recopying and recompilation is not an everyday requirement. Since copying and
compilation can often be performed during off-peak hours, the performance penalty for
this approach is not so great as it might at first appear.

This approach has the advantage of ensuring that "inadvertent reuse” does not occur, but,
like other aspects of the development process, is subject to cost-benefit analysis.

CSC/SSD - UHCL/RICIS 17 30 April 92

CSC/TR-92/6054
GSDE Software CM

3 2.1 IQTE-resident product flles

A modlﬁcatmn of the clean slate approach that ad’
is illustrated in figure 5. While it is still the case than no software flows back to the

GS/SPF, some hbrary files are retamed in fhe IQTE to allev1ate the recompﬂanon
problem.

‘E E controlled product files

are retained in IQTE

8 for further testing

\4
== [
, =,

GS/SPF with CM and STM

1-6 (see preceding figure for activities 1 through 6)

7 Libraries and executable images are retained on the target under control
from the GS/SPF (e.g., using STM)

8-9 New component D and modified component A2 are combined
with previously retained files to generate new products -

Figure 5. IQTE-resident product files
Improved pe?formance is achieved with only moderate compmmxse of secunty by
retaxmng complléuon products and assocxated source files

Because of the way advanced compiler systems operate, it is unpracncal to keep only
object files in a compilation library. Ada compilation systems in particular require that
source code be accessible in order to verify interface definitions. While C compilers do
not require source code for related files, typical SCCS and Make systems do.

~ Accordingly, the libraries noted in figure 5 represent both source (write-locked,
preferably) and object code.

The intent of retaining these libraries on the IQTE is not to support editing and
debugging. Rather it is for the purpose of uploading and compiling other files which
may require the earlier libraries in order to compile. By retaining write-locked source
files and object code on the target, it is possible to avoid having to recopy and recompile
everything for the sake of a small number of new source code components. Editing of
source files on the target machines should be strictly prohibited, even for unit-test files.
(This is the reason for write-locking the files.)

The MSC CM plan states that this will be the case. The TSC plan is less definite, and
permits debugging of files that are being unit-tested in the IQTE. The use of a Rational

CSC/SSD - UHCL/RICIS 18 30 April 92

(i

3.2.2

CSC/TR-92/6054
GSDE Software CM

R1000 as part of the IQTE would facilitate editing in the target environmeat, even if such
modifications are officially discouraged.

As a cautionary note: developers on the AAS project for the FAA" found that, when

“subsystems were developed on Rational computers and uploaded to IBM mainframes for

compilation and test, massive recompilation was sometimes preferable to piecemeal
changes and updates. The cost of determining which routines needed recompilation,
using the IBM SLCM configuration management tool, was a significant factor in the
tradeoff analysis.

GS/SPF-resident product files

Leaving product files (especially libraries containing source code) in the IQTE poses
risks of inadvertent use. Another option that reduces the cost of recompilation while
retaining control of product files is to transfer those files back to the GS/SPF under
configuration control. Figure 6 illustrates this procedure.

' SPE . IQTE W

controlled product files
are moved to the GS/SPF

instead of being deleted

load image library

.............. . .

i ABC | | AB-C

GS/SPF with CM and STM

1-6 (see preceding figure for activities 1 through 6)

7 Libraries and executable images are copied to the GS/SPF and deleted from
the IQTE. On the SPF they are controlled by STM

Figure 6. Storing product files in the GS/SPF
Performance and security are balanced by keeping compilation products under formal
CM, available for use in subsequent test activities.

The GS/SPF provides the most rigorous configuration control in the entire GSDE. The
procedure suggested here would place product files (executable images, test data,
compilation libraries, etc.) under configuration control in snapshot form--able to be used,
but not modified. The primary disadvantage to this procedure is that a conduit is opened

* The Advanced Automation System is an Ada-language real-time command and control system buing built on
IBM mainframes using Rational development tools.

ad

CSC/SSD - UHCL/RICIS 19 30 April 92

3.3

CSC/TR-92/6054
GSDE Software CM

for files to be copied from the target to the development environment. This risk,
however, is quite manageable using the snapshot mechanism. The SSE-provided STM
has mechanisms in place to receive and control such product files without making them
accessible to editing.

) Atmprescnt nclthcr TSC nor MSC has mdxcated any mtent to use thlS procedure. The

MSC approach does not permit any reverse flow o{ fgcg from the target to the

development host. The TSC approach involves maintaining these files in the
"reconfiguration host" in the target environment.

Combined formal/informal CM

With STM, the GS/SPF has the capability of supporting a less formal method of
configuration control, as a complement to the formal CM procedure. This Software Test
Management capability provides for close integration between contractor-managed CM
and the GS/SPF. Figure 7 illustrates the use of this capability to combmc formal and
informal source code control.

1t will often be the case that developers use tested, certified software as scaffolding for

newly developed code. It is often easier and more reliable to use the actual target of an
interface rather than a test version composed of stubs. Unit testing, therefore, can
combine certified code with newly developed code. STM provides a mechanism for
placing unit-test software under sufficient control to allow it to coexist safely with
formally-controlled code.

This procedure requires that compllanon products from other activities be retained under
CM either in the GS/SPF or in the IQTE. The existing products (e.g., libraries and
executable images) are combined with STM-managed source files to create unit-test
configurations.

The primary risk inherent in this approach is that productfﬁes;(;uch asfﬁieZCOmpifaﬁon
library A-B-C-d-e in figure 7) that include combinations of accepted and unaccepted code
may inadvertently be used for formal testing. In figure 7, for example, if the library A-

B-C-d-e were used instead of the original library A-B-C, the presence of not-yet-accepted
components d and e might mask errors that would otherwise be uncovered during testing.

The STM solution to this risk is to ensure that all product files are properly identified as
resulting from specified tests. In this example, the library A-B-C-d-e could not be

checked back in to replace A-B-C, because product files cannot be updated or replaced
except as part of a specific test procedure.

CSC/SSD - UHCL/RICIS 20 30 April 92

|

ro

CSC/TR-92/6054
GSDE Software CM

S/W Production Environment (SPE) :ntstzg:'gﬂon. qluallﬂcatlton
' (-] environmen
Al]l (am '
controlled libraries are
permitted on the target

‘ Jom]) —

i
] Ce — 77X 3
GS/SPF\ ~ - : >Lallellc]

1 Files A, B, C are promoted from contractor CM to formal CM on the GS/SPF and
2 uploaded to the target (1QT) environment under CM control
3 A, B, C are compiled into controlled library A-B-C on the target

SPE IQTE

load image

4
v
: (9] [
c , —STM 5
< \
GS/SPF with STM

4 Unit test files d, e are promoted from developer CM to STM control on the GS/SPF

5 Files d, e are transferred by STM to the IQT environment
6 Files d, e are compiled and added to library A-B-C-d-e under STM (not CM) control

7 STM-controlled executable ABCde is generated from library A-B-C-d-e

SPE IQTE load image
d e
8
. 4]
1c s =
GS/SPF with STM

8 Executable ABCde is tested on the target. Library A-B-C-d-e is not usable for
integration or qualification testing because it includes unit-test components.

Figure 7. Combining formal and informal CM
File access and system performance is aided with the provision of informal mechanisms
for software testing. File integrity is maintained using the SSE-provided STM.

CSC/SSD - UHCL/RICIS 21 30 April 92

34

CSC/TR-92/6054
GSDE Software CM

Using the SPE as a conduit

Thus far the discussion has assumed that the GS/SPF is the sole conduit between the SPE
and the IQTE for post-acceptance software. (Software undergoing unit test is not
addressed by this study). However, it is also possible for software to be transferred

directly from the SPE to the IQTE, as shown in figure 8.

Source files would be promoted from contractor-managed CM to formal CM on the
GS/SPF, as was the case in figure 4. However, the files would be retained in the SPE as
well, in order to be uploaded to the IQTE directly from the SPE. Compilation on the
target would not be d1rect1y based on the files under formal comrol

As a result of build and test activities on the target platform, therc would be several
copies of basic or derived files under various levels of control. The same files would
exist on the SPE in contractor-managed CM, on the GS/SPF in formal CM, in the IQTE
as source files, and perhaps in compilation libraries as well. (It's also likely that the
programmer has retained a copy of his or her files in private workspace, but that should
not pose a problem for CM). The real risk, of course, is that all of these files would not
be the same even though the CM system would record it so.

As suggested in figure 8, it would be entirely possible for changes to be made in the SPE

*(under contractor CM) and propagated to the IQTE without updating the formally

controlled files. The result is a compilation library and executable image (e.g., A2BC)
that do not correspond to the controlled source code. If those product files are delivered,
or used in other testing, the overall reliability of the development process is significantly
affected

The CM plans of MSC and TSC both include some mechamsms for bypassing the
GS/SPF in promoting files from the SPE to the target. The MSC proposal using
CORCASE would provide a distinct SPE-to-target interface mechanism. The TSC
proposal would effectively treat the reconfiguration computer as an extension of the SPE
when convcmcnt, and an extcnsmn of the targct at othcr times.

“There are at least two p0551ble approaches to mmgate the nsks inherent in this interface

mechanism. One is to require that all compilation and build for test and delivery be
performed from GS/SPF storage. This would ensure that even if there were CM failures
leading up to testing, the final test or delivery would meet the requirements in section 2.

Another approach is to provide an automated interface between contractor CM and
formal CM to report whenever a source file is uploaded to the target from the SPE. This
interface would compare the version identification of the uploaded file with the
appropriate formal CM record, and if necessary record that the formally-controlled file
was no longer valid. It is recommended that this be an automated interface.

CSC/SSD - UHCL/RICIS 22 ' 30 April 92

Iw oW QW (4

!

1

CSC/TR-92/6054
GSDE Software CM

S/W Production Environment (SPE) Integration, qualification
[aAa]llse |]lc] test (IQT) environment
NG N N O S N o s |
1
(allsl]lcl (/)
GS/SPF with formal CM

1 Files A, B, C are promoted from contractor CM to formal CM on the GS/SPF

2 A, B, C are also uploaded under contractor CM to the target, and kept in
the SPE still under contractor CM (duplicating formal CM)

SPE IeTE A] (8] [c |

Calls Jic] NN V3

LAalls]lLcl]
GS/SPF - load image

3 Source files A, B, C are compiled into library A-B-C under contractor CM
4 Executable ABC is generated for testing on the target

SPE
s) edlel &

IQTE

Lallellcl]

GS/SPF

5 File A is moditied to be A2 under contractor CM
6 File A2 is uploaded to the target
7-8 A2 is compiled into library replacing component A, and used to generate
executable image A2BC which does not corrrespond with GS/SPF CM

Figure 8. Using the SPE as a conduit
Files on the GS/SPF become redundant and difficult to certify as original and modified
source files are moved directly from development to target.

CSC/SSD - UHCL/RICIS 23 30 April 92

3.5

3.5.1

CSC/TR-92/6054
GSDE Software CM

The mosaic effect

As noted in the preceding discussions there will be a range of formality in the CM
1mposed on files in the IQTE Unit testmg, acceptance testmg, IT, QT, and buildup for

inadvertent mixture of components.

The term mosaic, borrowed from genetics, refers to a composite that is made up of
fragments of different origin. In this situation, it describes a test item or configuration
whose origin involves dlfferent versions of software. ("Mosaic” also sounds better than
its less precise alternative, mongncl")

Compilation libraries

During development any given subsystem will require and utilize elements from other

subsystems in developing and testing interfaces. This is particularly true in the case of
Ada, where interface definitions are owned in common between subsystems. The
situation Lllustratcd in figure 9 can easﬂy OCCur.

1QT Environment Conﬂguratlon control domains

developer CM
domain

Formal CM "“version 2" domain
Formal CM “version 3" domain

> primary contribution *Versions 2 and 3" represent

""""""""" > supporting contribution sequential development efforts

Figure 9. Mixed libraries in the IVT
Since developers will often need access to latest versions of code, sharing of files is
inevitable and difficult to manage.

During early testing of software, developers will routinely borrow code (e.g., Ada
package specs) from other libraries to ensure consistency and save effort. Similarly, to
save effort, these borrowings will become embedded in the command scripts that create

CSC/SSD - UHCL/RICIS 24 30 April 92

€ il

{

3.5.2

CSC/TR-92/6054
GSDE Software CM

test articles. The availability of multiple libraries serves a valid purpose in facilitating
inter-subsystem and inter-version consistency. It also raises a risk that what actually gets
tested is not exactly what was planned.

One solution is to prohibit the implicit sharing of files, and to make explicit sharing
subject to formal record-keeping. The goal is not to prevent sharing, only to manage it.

An additional protection is to use file and library access controls to ensure that test
software is only generated from its own approved libraries. When a component is
transitioned from one level of testing to another, it will have access to a different set of
libraries. (This may result in some consternation when a module that worked in unit test
won't even compile during integration testing, but that's one of the reasons for integration
testing.)

The MSC plan for CM has not yet specified policies for the use of libraries in the
CORCASE CM environment. The TSC plan envisions the use of procedural and access-
control mechanisms to address the problem.

Testbed construction

A more complex problem occurs in the construction of testbed configurations for testing
in the IQTE. The library-sharing described above is largely a matter of convenience
during development; it can be managed with access controls on files. During integration
testing, however, the combination of resources from different development streams in
inevitable. Since different developments occur on different schedules, the situation
shown in figure 10 is likely to be the rule rather than the exception.

The primary concern with shared testbed elements, of course, is the impact on
repeatability of the testing process. The various development streams constitute moving
targets, and reconstruction of all of the elements can be impossible without careful
management. '

Test data is particularly subject to continuous evolution, both to accommodate more
requirements and to reflect changes in the mission statement (e.g., different launch
profiles). But all of the testbed items are mutable, even when the various subsystems
become operational. The recommended approach to managing the mosaic testbed
problem is a combination of snapshots and detailed record-keeping.

Snapshots of test configurations improve the probability that regression testing can be
performed at a later date. (They don't provide an absolute guarantee, if for no other
reason than the possibility of changes in the hardware configuration). Snapshots are
particularly useful in the process of tracking down the point when a fault was introduced
into a system.

. CSC/SSD - UHCL/RICIS 25 30 April 92

CSC/TR-92/6054
GSDE Software CM

developer CM
domain

Formal CM "“version 2" domain

Formal CM “version 3" domain

Figure 10. Mixed product files in the IQTE
With several types of testing (unit, acceptance, integration, quahficauon) occurring in
the same envu'onment shanng of ﬁles is me\ntable

Careful record-kecpmg sunply mvolves trackmg thc provenance of all items that enter
into a testbed. For software, these records will generally provide access to the source
code and permit regeneration of the items. For test data, detailed records will at least
indicate when a particular data set was created and perhaps how it was generated.

The SSE-proposed build-up process, planned for OI 7.0, will involve detailed
information on all stages of the compile and build sequence. That same information,
captured for test arnclcs and testbed elements, can provide the information needed to
meet the requirements in section 2 concerning reproducibility of testing.

Neither MSC nor TSC has provided sufficiently detalled CM plans to determine how--or

whether--fhls problem w1ll be addi'cssed.

CSC/SSD - UHCL/RICIS 26 ' 30 April 92

CSC/TR-92/6054
GSDE Software CM

Section 4 - Space Station Control Center

4.1

The Space Station Control Center will be a complex of IBM mainframe computers,
Unix-based workstations, and special-purpose communications hardware networked to
each other and to NASA communications systems. It is being developed for JSC on the
Mission Systems Contract. The overall software architecture of the SSCC was described
in earlier reports in this study: Appendices B and E of the Interface Requirements
Analysis Report (June 1991) provide a good overview.

The SSCC will be developed with a substantial amount of non-Ada code in order to
capitalize on previous control center development work. Most of the non-Ada code will
be C-language code, and will be used in the consoles (workstations) of the SSCC.
Development approaches have been defined to accommodate this dual-language
approach.

Overall, the approach of the MSC contractor to software CM has been to follow the
requirements and recommendations made by JSC, including the SSE CM capabilities and
the recommendations of the RICIS study.

Overall software workflow

In January, 1992, the MSC contractor proposed an alternative structure for the SSCC
Software Production Environment. This alternative replaces the Rational R1000-based
development environment with a VAX-based system, and replaced SSE-developed or
provided software with custom or different off-the-shelf software. Not all COTS
software is changed in the MSC proposal, but the basic development structure is
significantly changed.

The primary argument made for this alternative is the need to integrate existing (C-
language) software into the SSCC development. The SSE-defined system is almost
totally Ada-directed, and was considered unsuitable for the SSCC project. (Note that the
flight-software orientation of the SSE is also a consideration, and has been in a factor in
this RICIS study effort.)

The alternative was described in the January briefing, "GSDE augmented with
CORCASE". A proprietary software management system called CORCASE, developed
by Loral's Western Development Lab, would function in the software repository role held
by the Rational R1000. The Ada compiler from Verdix would replace the Rational Ada
compiler, and the Software Backplane from Atherton Technologies would provide the
tool integration capabilities currently provided by Rational and SSE-developed software.
Many of the specific tools, such as Teamwork and Interleaf Publisher would be retained
in the alternative.

CSC/SSD - UHCL/RICIS 27 ; 30 April 92

4.2

4.3

Configuraftlon'zrmfanagéme’nf |

CSC/TR-92/6054
GSDE Software CM

CORCASE the software repository, was developed for Unix systems to support the DoD
software development standard 2167A. It would be modified to run on VAX Ultrix —
servers and to match JSC-specified life-cycle definitions.

The CORCASE system would provrde software CM serv1ces extendmg from developers
workstations to the test and integration environment. It would interface with the formal
CM residing on the GS/SPF. The Rational CM system (CMVC), with its detailed Ada
code integration capabilities and subsystem management ("frozen views") approach,
would be partially replaced by the combmauon of CORCASE and the Atherton Software
Backplane. . - . .- S R

The proposed solution would provide much better support for non-Ada code, because all
source code would be managed in the same form. (The Rational R1000 is not a very
congenial environment for non-Ada code). Some of the benefits of the R1000 would, of
course, be lost, most notably the 1ncrementa1 compllatxon capablhty

The SSE pI‘OjCCt has developed a substantlal amount of software to mtegrate the Oracle-
based CM with the R1000-based CMVC. This software goes considerably beyond the
capabilities provided by Rational. This software automates significant portions of the
checkin-checkout and verification process for initial entry into the CM system and
subsequent entry of changes

The MSC contractor has proposed to construct a batch file interface using the same
capabilities on the GS/SPF and newly developed interface support in CORCASE. The
difficulty involved in this construction would presumably be on the same order of

magnitude as the original development by the SSE project.
Although details are not clear, it appears that the CORCASE system would support

direct, managed file transfer capability between the SPE and the IQTE, as discussed in
sectlon 3. 4 of tlus report.

The proposed development arclutecture appears to replace any use of the GS/SPF-based
Software Test Management System with CORCASE test management.’

Assessment

There are not enough details available, nor has there been sufficient time to fully
investigate the CORCASE-Atherton alternative. Based on documentation from Atherton
and from Verdix (the Ada compiler vendor), the tool integration aspects of the
CORCASE alternative are doable. However, detailed information on CORCASE itself
was considered by Loral to be proprietary information and was not available to the

RICIS study team.

CSC/SSD - UHCL/RICIS 28 30 April 92

{

o

{|

[

CSC/TR-92/6054
GSDE Software CM

There are several issues to be considered from the perspective of GSDE interfaces:

1. The "batch file interface" development to integrate CORCASE with formal CM
may be a significant effort, and may not be available to support early stages of
software acceptance test and integration when delivery to formal CM first takes
place. Without detailed CORCASE information, this risk is impossible to assess.
Although the SSE CM Oracle interface definitions are published, duplicating the
Rational-Oracle interface may not be trivial.

2. The relative difficulty of automating CM interfaces, a stated goal of the SSCC
project, cannot be assessed.

3. The ability to bypass the GS/SPF, as CORCASE interacts directly with the test
environment, raises concern that formally-controlled software may not always
match the software that gets tested or even delivered.

4. STM capabilities are expected to evolve into the formal build-delivery process for
Space Station software. If CORCASE is a substitute for STM, it may also have
to evolve to match the SSE-developed capabilities.

5. There is no experience with CORCASE or the Atherton Software Backplane in
the NASA environment. The DoD software environment is different in many
respects, particularly in terms of documentation requirements and cost.
CORCASE may well be an excellent solution for problems not found in the JSC
environment.

6. The Atherton Software Backplane is essentially a data repository. CORCASE is
essentially a data repository. It is not clear how the Atherton interfaces will
interact with the CORCASE data systems.

7. The present CORCASE will have to be modified to match current requirements.
It is reasonable to assume that continued modifications will be required to address
changes in requirements. (The SSE project provides ample evidence of
requirements evolution). Cost issues are not directly within then scope of this
study, but interface and schedule and capability considerations are. The fact that
such a continuing development activity, paralleling the SSE project, must occur -
to support the MSC alternative raises those considerations.

8. In the event that the CORCASE-Software Backplane approach is phenomenally
successful, the fact that CORCASE is a proprietary tool might prevent other JSC
projects from emulating that success.

The bottom line is that there are many unresolved issues involved in the SSCC project
plan for CM. On the positive side, the SSCC team has consistently demonstrated a great
concern for CM issues and a high degree of professionalism. They clearly take the risks
of inadequate CM very seriously, and have acted to minimize those risks.

On the negative side, the SSE project started out with a proprietary software management
tool, the APCE, and had a rather dramatic lack of success with it.

CSC/SSD - UHCL/RICIS 29 30 April 92

CSC/SSD - UHCL/RICIS

30

CSC/TR-92/6054
GSDE Software CM

30 April 92

iy qur e

il

{l

CSC/TR-92/6054
GSDE Software CM

Section 5 - Space Station Training Facility

5.1

5.2

The Space Station Training Facility will involve workstations, standard data processors
(SDPs), special-purpose input and output devices, and medium-scale mainframe
computers to provide a functional simulation of Space Station Freedom. The SSTF is
being developed for JSC on the Training Systems Contract. It will provide major
support for mission crew training and will provide a venue for demonstrating and testing
user interface systems developed for on-board use.

The SSTF software development effort will use Ada for the most part, with some
special-purpose elements using C or other languages. The development environment was
described in the June 1991 RICIS study report, in appendices B and D. Additional detail
is provided by the "SSTF Software Configuration Management Approach” briefing,
September 1991.

Overall software workflow

SSTF software developers will build software using workstations and Rational R1000
development computers. The SSE-provided STM and formal CM capabilities on the
GS/SPF will be used to move software into the target environment for compilation,
integration and test. The SSTF development plan incorporates a "reconfiguration
Rational” that will serve as an adjunct to the reconfiguration (Recon) mainframe in the
target environment. The Recon mainframe will act as the CM host for intermediate
products and command scripts.

Developers will have access from workstations to the target environment in order to test
interactive software, to monitor test execution, and to debug code in development.
Presumably the Recon Rational will simplify the debugging process, although
workstation-based text editors will also serve the purpose.

Access controls in the target environment will prevent developers from modifying
resources that are used in training or are undergoing formal test. Nevertheless, the
considerations applying to mixed environments, which were described in section 3 of this
report, are applicable to the TSC development process.

Configuration management

The TSC CM plan describes a graduated approach to CM at different levels of rigor and
authorization. This reflects a clear recognition of the operational considerations
described in section 3, and is well suited to the complexity and size of the project. The
TSC plan is to distribute the CM function across three different platforms based on the
type of object to be managed (e.g., source, compilation products, executable loads). The
stated purpose of this distributed system is to minimize waste and redundancy.

PRECEDING PAGE BLANK NOT FILMED

CSC/SSD - UHCL/RICIS 31 30 April 92

CSC/TR-92/6054

GSDE Software CM ?
The TSC approach identifies the level of authority responsxble for changes at each stage .
of development through dehvex;y y to operanons and sustaining engineering. It specifically —
encompasses the need to have different versions in different phases of development at the ®
same time. It states that NASA will have full visibility into the different CM systems. _
L 7———'—%};—:—:; . - RN - SRR A DS %
' -
5.3 Assessment =
The SSTF CM plan is described as a three-part distributed integrated system. It attempts
to partition the software process along lines that will minimize the need for =
communications across the boundaries of the distribution. Source code is in one place,]
compiled code in another, operational software is in a third. The intent is to store and
manage products where they are used: SR =
-
(The CM plan also describes a fourth element, developer-level CM, which is not
addressed in this study). =
=
The CM plan also provides a detailed map of what inputs, products, activities, and
management occur at steps throughout the development life cycle. In addition, it =
provides a thoughtful (though negative) response to earlier RICIS study findings.]
The basic assessment of the study team is that the TSC plan focuses too much on making =
things easy (simplifying interfaces, putting things where they'll be used, etc.), and not]
enough on makmg things secure.
Although many of the recommendatxons made prev1ously have in fact been incorporated %
into the SSTF CM plan, there is still too little detail to determine whether or not the
protections described will meet the requirements detailed in section 2 of this report. =
-
The study team found three areas of particular concern in the SSTF CM approach: the
use of automation (or lack thereof), the effectiveness of (and visibility into) distributed =
CM systems, and the interface complexity in distributed CM. In all three areas the major —
finding was a lack of information with which to make a complete assessment, coupled
with an approach that emphasized development efficiency rather than configuration =
reliability. -
CM Automation =
o , -
The SSTF CM approach does not identify which elements of the process will rigorously
controlled and which will be up to developer discretion. The different enforcement =
mechanisms are treated as mterchangeablc -
) Cmng from the September 19917"t’)h;“h¥1g R =
-
&
&

CSC/SSD - UHCL/RICIS R 7 I 30 April 92

(

{

(

CSC/TR-92/6054
GSDE Software CM

Movement of software and data between these environments is controlled
by automation, by access controls, and by procedural controls. Automated
Interfaces and manual procedures will control this integration [of the
distributed CM systems]. SSTF's division of these systems reduces the
complexity of the interfaces.

This policy statement provides no assessable information, and ignores the reality that
automated controls are markedly more effective than manual procedures in
accomplishing the goals of CM. If programmers could be relied upon to fully comply
with manual procedures, there would be no need for CM tools. Yet the SSTF outlook on
CM automation is unenthusiastic (from the same briefing):

Complete automation of this interface [between development and test
environments] would be expensive, would slow and complicate
development, and is unfeasible at preset. TSC has learned important
lessons from attempts to centralize and automate CM in previous
simulation complexes.)

SSTF CM process is currently as automated as is feasible.

In view of the fact that TSC has not identified what elements of the interface are
automated, or what tools (COTS, SSE-provided, or developed) will be used in the CM
process, the SSTF contention ("as automated as is feasible") can be neither disputed nor
confirmed.

Effectiveness and visibility of distributed CM systems

This issue is quite simple: while the CM system specified for source code (the SSE CM
system on the GS/SPF) is a known quantity, the Recon and Ops CM systems are
unknown. If the Recon and Ops CM systems provide the same degree of rigor and
visibility as the GS/SPF CM system, the risk will be small.

The emphasis of the SSE-provided formal CM system is on accountability and control,
not on developer convenience. It may be painful, but will be dependable. Similarly, the
degree of visibility into the SSE product is fully defined in the SSE requirements and
design documentation.

Until those systems are specified and assessed, this area of risk will remain.

Distributed CM interfaces

The TSC allocation of CM functionality to different platforms for different types of
products makes sense from an operational view. Source code is processed by editors
which exist in the developmert environment, and should reside there. Compiler output is
used (to build load images) in the target environment, and so on. Operationally, the
allocation makes sense. However, when the requirements defined for CM are used as a
basis for assessment, the effectiveness of these allocations is more ambiguous.

CSC/SSD - UHCL/RICIS 33 30 April 92

CSC/TR-92/6054
GSDE Software CM

One requirement is to be able to reconstitute delivered software from source; another is

to be able to reproduce a test session. Distributed CM complicates these activities.

To rebuild a product in the SSTF approach, source code from the GS/SPF CM system .
must be married with compilation scripts (angl possibly intermediate libraries) from the
Recon CM system. This means that if either CM system is changed, the other must be
informed. (If the scripts on the Recon CM system are modJﬁcd the fact that the source

code i is unchanged will be all the ‘more confusmg)

Repeating a test will involve test scripts and test data from GS/SPF CM and loads from

OPS CM. If the retest involves recompiling a test article, all three CM systems become
involved. All three must therefore be kept synchronized, and changes to any one must be
rcﬂected in two othcr places Thxs compounds the complcxlty of the mterface, instead of

The problern with distributed CM, as TSC has designed it, is that the reliability of the
system is no better than the lowest common denominator. Rather than redundancy

(which would improve reliability) we have serial interfaces wherein the total process is
no more secure than its least secure step.

Summary

The assessment of the study team is that TSC has put a lot of effort into formulating a
comprehensive plan. This plan is substantially improved from that which was originally
reviewed. TSC's approach shows clear appreciation for the technical requirements of
software configuration management, and provides justifications for those areas where it
deviates from the straightforward SSE-provided mechanism.

Nonetheless there is a degree of risk inherent in the lack of specific detail (e.g., the name
of COTS software CM tools or the design specification of a developed tool). That risk is
made more significant by what we perceive as a lack of balance between developer
convenience and configuration security. Finally, we believe there is a significant
likelihood that the proposed distributed CM system will fail to ensure product
consistency without significant manual overhead. '

CSC/SSD - UHCL/RICIS 34 30 April 92

@l e gur S W eWe e

g

o

¢nor

x

CSC/TR-92/6054
GSDE Software CM

Section 6 - Recommendations

6.1

The primary recommendation of this study (as it concludes) is that some independent
review of the CM plans of both the SSCC and the SSTF projects should continue to
occur. In our opinion, the responsiveness of both contractors, whether enthusiastic or
grudging, has led to a greater awareness of the requirements of CM and better plans for
implementing it.

A secondary recommendation is that the use of the SSE STM be strongly encouraged,
and that interface tools and scripts be built to adapt STM to the ground system
environment. This would serve to establish a degree of commonality between SSCC and
SSTF, and would provide more uniform information to NASA on the progress of testing
in the two projects.

Specific recommendations for each ground systems are discussed below.

Space Station Control Center

The basic recommendations are essentially drawn from the assessment in section 5.

1. The alternative approach presented by MSC using CORCASE as a replacement
(in part) for the SSE needs to be evaluated in detail. The following specific items
should be considered:

a. What is the commitment to maintaining and evolving CORCASE as
development requirements change, and as problems arise? How can the
contractual problems of the APCE (the unlamented SSE tool) be avoided for
CORCASE? Who will have rights to use the modified, evolved tool? |

b. How do two repository-based systems (CORCASE and Athertor)
productively co-exist? Is information stored redundantly? Can it be shared
with other systems?

c. What tailoring is being done to make CORCASE compatible with JSC
development phases and methods?

d. How difficult will it be to interface CORCASE with the Oracle-based CM
and STM?

e. What is the impact of losing the incremental-compilation capability as the
R1000 compiler is replaced with the Verdix Ada compiler?

f. How easy is CORCASE to use in real projects? Who has experience with it
and what are the positive and negative elements of that experience?

2. The CM should plan be clarified to ensure that CM storage on the GS/SPF does
not become an afterthought (see figure 8). (For example, it could be required that
all deliveries be generated from source code entirely from the GS/SPF.)

CSC/SSD - UHCL/RICIS 35 30 April 92

6.2

CSC/TR-92/6054
GSDE Software CM

3. The interface with STM should be clarified and used dunng tcstmg, even if

CORCASE provides an alternative mechanismi.

‘Space Station Training Facility -

Most of the detailed recommendauons are made in the assessment in section 5. The
study team recommends:

lf,,

The GS/SPF CM system should be used as a master CM system even if routine

'CM is handles by Recon or Ops CM. There should be one place which is the

final authority and a complete source for regenerating products, and the formal
CM system is the best tool for that job.

Automated procedures should be developed for generatmn of dchverablc
products

. System secunty proccdurcs should be clarified to state that source code never

goes from the integration or operational systems into the development area or into
the GS/SPF. (As currently described, code being unit tested can be modified in
the test environment and returned to the SPE).

The tools and procedures to be used for CM should be specified in detail, either
as COTS products or as specific development efforts.

Once the tools are spcaﬁed they should be sub]ect to mdepcndcnt review in
terms of their configuration security and provisions for NASA visibility into the
CM databases.

CSC/SSD - UHCL/RICIS 36 30 April 92

@il e ee @w ew Wil en @ @l Wdl il El G W

i

{

Glossary
AAS

Ada
C

CASE
CM
CORCASE

COTS
CR
CSC
DR

FAA
formal CM
GS/SPF

GSDE
IQTE

JSC
NASA
10)8

QT
repository

RICIS

CSC/SSD - UHCL/RICIS

CSC/TR-92/6054
GSDE Software CM

Advanced Automation System: a large real-time ground support
system (for air traffic management) currently under development
in Ada, using Rational R1000 development computers and IBM
mainframe target computers

the primary programming language for the Space Station Freedom
Project. Ada is a trademark of the US Department of Defense

a programming language commonly used with Unix systems and

‘applications programming

computer-aided software engineering
configuration management

proprietary life-cycle management environment for software
development, proposed for use on the MSC

commercial off-the-shelf (usually refers to software or hardware)
change request: a formal request to change a requirement
Computer Sciences Corporation

discrepancy report: a formal report that a system (in this case,
usually software) does not meet its requirement specification

Federal Aviation Administration (custorner for AAS projcct)'

the SSE-provided CM system residing on the GS/SPF; it manages
the software that has been delivered to NASA, a provides a
controlled baseline from which deliveries are made to operations

Ground Systems/Software Production Facility (the mainframe
computer in the GSDE that hosts the SSE-provided SPF software)

Ground Systems Development Environment

integration and qualification test environment (a term used in this
report for the target environments of the two projects)

Lyndon B. Johnson Space Center, Houston, Texas
National Aeronautics and Space Administration
operational increment (the added functionality in a new release)

qualification testing--the last testing stage prior to delivery to
operational use (in the GSDE life cycle)

a structured collection of project data generated and used by CASE
tools and maintained by a repository manager

Research Institute for Computers and Information Systems

37 30 April 92

SDP

snapshot

Software BackPlane
SPE

SPF

SSCC
SSE
SSFP
SSTF
STM
STR

UHCL

CSC/SSD - UHCL/RICIS

CSC/TR-92/6054
GSDE Software CM

standard data processor (the onboard processor spec1ficd for Space
Station Freedom)

a complete stored copy of a software component or subsystern at a
specified point in its development; subsequent changes to the
software can be compared to the snapshot

a CASE support framework from Atherton Technology, provides

repository services and tool interfaces to third-party tools

software production environment; a network of servers and
workstations used for the d651gn and development of software

software productmn famhty an SSE term for the combination of
hardware [DEC VAX or IBM mainframe] and software [SSE-
developed and COTS] that anchors a local network of
development servers and workstations

Space Station Control Center . .-
software support cnv:u'onment (specifically, the SSFP SSE)
Space Station Freedom Project '
Spaéé Eﬁﬁon Training Facility
~ software test management: a capability of the SSE

system (or software) trouble report: a less-formal equivalent to a
DR (discrepancy report)

University of Houston - Clear Lake

38 30 April 92

& oew Qo €U e e

